Reference list
Reading List EFC Spring School
Please note that this is a non-exhaustive list of readings useful to engage with the Economic Fitness and Complexity literature. This list is constantly evolving; core readings highlighted in red will help you in the comprehension of the EFC Spring School lectures and coding labs.
Methods
Tacchella, A., Cristelli, M., Caldarelli, G. et al. (2012). A New Metrics for Countries' Fitness and Products' Complexity. Sci Rep 2, 723. https://doi.org/10.1038/srep00723
Hidalgo, C. A., & Hausmann, R. (2009). The building blocks of economic complexity. Proceedings of the national academy of sciences, 106(26), 10570-10575
Cristelli M, Gabrielli A, Tacchella A, Caldarelli G, Pietronero L (2013) Measuring the Intangibles: A Metrics for the Economic Complexity of Countries and Products. PLoS ONE 8(8): e70726. https://doi.org/10.1371/journal.pone.0070726
Tacchella, A., Mazzilli, D., & Pietronero, L. (2018). A dynamical systems approach to gross domestic product forecasting. Nature Physics, 14(8), 861-865
Servedio, Vito D. P., Paolo Buttà, Dario Mazzilli, Andrea Tacchella, and Luciano Pietronero (2018). A New and Stable Estimation Method of Country Economic Fitness and Product Complexity Entropy 20, no. 10: 783. https://doi.org/10.3390/e20100783
Pietronero, L., Cristelli, M., Gabrielli, A., Mazzilli, D., Pugliese, E., Tacchella, A., & Zaccaria, A. (2017). Economic Complexity:" Buttarla in caciara" vs a constructive approach. arXiv preprint arXiv:1709.05272
Mazzilli D., Mariani S. M., Morone F., & Patelli A., (2022). Fitness in the light of Sinkhorn, arXiv preprint arXiv:2212.12356
Balland, P. A., Broekel, T., Diodato, D., Giuliani, E., Hausmann, R., O'Clery, N., & Rigby, D. (2022). Reprint of The new paradigm of economic complexity. Research Policy, 51(8), 104568
Operti F., Pugliese E., Andrade J. S., Pietronero L, Gabrielli A., (2018). Dynamics in the Fitness - Income plane: Brazil states vs World countries, PLOS ONE, 14(5), e0217034,https://doi.org/10.1371/journal.pone.0197616
Pugliese, E., Zaccaria, A. & Pietronero, L. (2016). On the convergence of the Fitness-Complexity algorithm. Eur. Phys. J. Spec. Top. 225, 1893–1911 . https://doi.org/10.1140/epjst/e2015-50118-1
Balassa R. (1965). Trade Liberalisation and "Revealed" Comparative Advantage, 33(2), 99-123
Economic growth and development
Tacchella, A., Cristelli, M., Caldarelli, G., Gabrielli, A., & Pietronero, L. (2012). A new metrics for countries' fitness and products' complexity. Scientific reports, 2(1), 1-7.
Cristelli, M., Tacchella, A., & Pietronero, L. (2015). The heterogeneous dynamics of economic complexity. PloS one, 10(2), e0117174.
Zaccaria, A., Cristelli, M., Tacchella, A., & Pietronero, L. (2014). How the taxonomy of products drives the economic development of countries. PloS one, 9(12), e113770.
Pugliese, E., Chiarotti, G. L., Zaccaria, A., & Pietronero, L. (2017). Complex economies have a lateral escape from the poverty trap. PloS one, 12(1), e0168540.
Castañeda, G., Pietronero, L., Romero-Padilla, J., & Zaccaria, A. (2022). The complex dynamic of growth: Fitness and the different patterns of economic activity in the medium and long terms. Structural Change and Economic Dynamics.
Sbardella, A., Pugliese, E., Zaccaria, A., & Scaramozzino, P. (2018). The role of complex analysis in modelling economic growth. Entropy, 20(11), 883.
Ferrarini, B., & Scaramozzino, P. (2016). Production complexity, adaptability and economic growth. Structural change and economic dynamics, 37, 52-6
Justin Yifu Lin, New Structural Economics: A Framework for Rethinking Development, The World Bank Research Observer, Volume 26, Issue 2, August 2011, Pages 193–221, https://doi.org/10.1093/wbro/lkr007
Lin, J., Cader, M., & Pietronero, L. (2020). What African Industrial Development Can Learn from East Asian Successes.
Cristelli, M. C. A., Tacchella, A., Cader, M. Z., Roster, K. I., & Pietronero, L. (2017). On the predictability of growth. World Bank Policy Research Working Paper, (8117).
Zaccaria, A., Mishra, S., Cader, M. Z., & Pietronero, L. (2018). Integrating services in the economic fitness approach. World Bank Policy Research Working Paper, (8485).
Roster, K., Harrington, L., & Cader, M. (2018). Country case studies in economic fitness: Mexico and Brazil. Entropy, 20(10), 753.
Andrea Morrison, Carlo Pietrobelli & Roberta Rabellotti (2008). Global Value Chains and Technological Capabilities: A Framework to Study Learning and Innovation in Developing Countries, Oxford Development Studies, 36:1, 39-58, DOI: 10.1080/13600810701848144
Cimoli, M., Dosi, G., and Stiglitz, J. E. (2009). Industrial policy and development: The political economy of capabilities accumulation. Oxford University Press, Oxford, New York.
Relatedness
Hidalgo, C. A., Klinger, B., Barabási, A. L., & Hausmann, R. (2007). The product space conditions the development of nations. Science, 317(5837), 482-487
Frank Neffke, Martin Henning & Ron Boschma (2011). How Do Regions Diversify over Time? Industry Relatedness and the Development of New Growth Paths in Regions, Economic Geography, 87:3, 237-265, DOI: 10.1111/j.1944-8287.2011.01121.x
Neffke, F. and Henning, M. (2013). Skill relatedness and firm diversification. Strat. Mgmt. J., 34: 297-316. https://doi.org/10.1002/smj.2014
Hidalgo, C.A. et al. (2018). The Principle of Relatedness. In: Morales, A., Gershenson, C., Braha, D., Minai, A., Bar-Yam, Y. (eds) Unifying Themes in Complex Systems IX. ICCS 2018. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-96661-8_46
Albora, G., Pietronero, L., Tacchella, A., & Zaccaria, A. (2023). Product Progression: a machine learning approach to forecasting industrial upgrading. Scientific Reports 13 (1), 1481
Straccamore, M., Zaccaria, A., & Pietronero, L. (2022). Which will be your firm’s next technology? Comparison between machine learning and network-based algorithms. Journal of Physics: Complexity.
Tacchella, A., Zaccaria, A., Miccheli, M., & Pietronero, L. (2021). Relatedness in the era of machine learning. arXiv preprint arXiv:2103.06017.
Diodato, D., Neffke, F., & O’Clery, N. (2018). Why do industries coagglomerate? How Marshallian externalities differ by industry and have evolved over time. Journal of Urban Economics, 106, 1-26
del Rio-Chanona, R. M., Mealy, P., Pichler, A., Lafond, F., & Farmer, J. D. (2020). Supply and demand shocks in the COVID-19 pandemic: An industry and occupation perspective. Oxford Review of Economic Policy, 36(Supplement_1), S94-S137. https://doi.org/10.1093/oxrep/graa033
Giuliani, E., Pietrobelli, C., & Rabellotti, R. (2005). Upgrading in global value chains: Lessons from Latin American clusters. World development, 33(4), 549-573.
Sustainability
Sbardella, A., Perruchas, F., Napolitano, L., Barbieri, N., & Consoli, D. (2018). Green technology fitness. Entropy, 20(10), 776.
de Cunzo, F., Petri, A., Zaccaria, A., & Sbardella, A. (2022). The trickle down from environmental innovation to productive complexity. Scientific Reports, 12(1), 22141.
Napolitano, L., Sbardella, A., Consoli, D., Barbieri, N., & Perruchas, F. (2022). Green innovation and income inequality: A complex system analysis. Structural Change and Economic Dynamics, 63, 224-240.
Sbardella, et al. (2022). The regional green potential of the European innovation system. Joint Research Centre (Seville site).
Barbieri, N., Consoli, D., Napolitano, L., Perruchas, F., Pugliese, E., & Sbardella, A. (2022). Regional technological capabilities and Green opportunities in Europe. The Journal of Technology Transfer, 1-30.
Inequality
Sbardella, A., Pugliese, E., & Pietronero, L. (2017). Economic development and wage inequality: A complex system analysis. PloS one, 12(9), e0182774.
Napolitano, L., Sbardella, A., Consoli, D., Barbieri, N., & Perruchas, F. (2020). Green innovation and income inequality: A complex system analysis.
Firms
Coad, A., Mathew, N., & Pugliese, E. (2021). Positioning firms along the capabilities ladder (No. 2021-031). United Nations University-Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
Pugliese, E., Napolitano, L., Zaccaria, A., & Pietronero, L. (2019). Coherent diversification in corporate technological portfolios. PloS one, 14(10), e0223403.
Straccamore, M., Zaccaria, A., & Pietronero, L. (2022). Which will be your firm’s next technology? Comparison between machine learning and network-based algorithms. Journal of Physics: Complexity.
Albora G, Zaccaria A . (2022). Machine Learning to Assess Relatedness: The Advantage of Using Firm-Level Data, Complexity, vol. 2022, Article ID 2095048. https://doi.org/10.1155/2022/2095048
Costa, S., De Santis, S., Dosi, G., Monducci, R., Sbardella, A., & Virgillito, M. E. (2021). From organizational capabilities to corporate performances: at the roots of productivity slowdown (No. 2021/21). LEM Working Paper Series.
Dosi, G., Nelson, R. R., & Winter, S. G. (Eds.). (2000). The nature and dynamics of organizational capabilities. Oxford university press.
Patents and Technology
Pugliese, E., Cimini, G., Patelli, A., Zaccaria, A., Pietronero, L., & Gabrielli, A. (2019). Unfolding the innovation system for the development of countries: coevolution of Science, Technology and Production. Scientific reports, 9(1), 1-12.
Napolitano, L., Evangelou, E., Pugliese, E., Zeppini, P., & Room, G. (2018). Technology networks: the autocatalytic origins of innovation. Royal Society open science, 5(6), 172445
Sbardella, A., Perruchas, F., Napolitano, L., Barbieri, N., & Consoli, D. (2018). Green technology fitness. Entropy, 20(10), 776.
Pugliese, E. and Tübke, A. "Economic complexity to address current challenges in innovation systems: a novel empirical strategy for regional development" Industrial R&I – JRC Policy Insights - July 2019
Dosi, G., Pavitt, K., & Soete, L. (1990). The economics of technical change and international trade. LEM Book Series.
Science
Patelli A., Napolitano, L., Cimini, G. & Gabrielli, A. (2023) Geography of science: competitiveness and inequality, Journal of Informetrics, 17(1), 101357, https://doi.org/10.1016/j.joi.2022.101357
Cimini, G., Gabrielli, A., & Sylos Labini, F. (2014). The scientific competitiveness of nations. PloS one, 9(12), e113470.
Patelli, A., Napolitano, L., Cimini, G., Pugliese, E., & Gabrielli, A. (2022). The Evolution of Competitiveness across Economic, Innovation and Knowledge production activities. arXiv preprint arXiv:2206.00368.
Patelli, A., Cimini, G., Pugliese, E., & Gabrielli, A. (2017). The scientific influence of nations on global scientific and technological development. Journal of Informetrics, 11(4), 1229-1237.
Corsini, A., Pezzoni, M., & Visentin, F. (2022). What makes a productive Ph. D. student?. Research Policy, 51(10), 104561.
Patsali, S., Pezzoni, M., & Visentin, F. (2021). The impact of research independence on PhD students' careers: Large-scale evidence from France. Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT) https://www.merit.unu.edu/publications/working-papers/abstract/?id=9071
EU Policy Briefs
Pugliese, E. and Tübke, A. "Economic complexity to address current challenges in innovation systems: a novel empirical strategy for regional development" Industrial R&I – JRC Policy Insights - July 2019
Pugliese, E. and Tacchella, A. "Economic Complexity for competitiveness and innovation: a novel bottom-up strategy linking global and regional capacities" Industrial R&I – JRC Policy Insights – 2020
Pugliese, E. and Tacchella, A., Economic Complexity Analytics: Country factsheets, EUR 30711 EN, Publications Office of the European Union, Luxembourg, 2021, ISBN 978-92-76-37869-3 (online), doi:10.2760/368138 (online), JRC124939.
Sbardella, A., Barbieri, N., Consoli, D., Napolitano, L., Perruchas, F. and Pugliese, E., The regional green potential of the European innovation system, European Commission, 2022, JRC124696.
Network Methods, Projections and Null Models
Cimini, G., Squartini, T., Saracco, F., Garlaschelli, D., Gabrielli, A., and Caldarelli, G. (2019). The statistical physics of real-world networks. Nature Reviews Physics, 1(1):58–71. doi:10.1038/s42254-018-0002-6
Saracco, F., Di Clemente, R., Gabrielli, A., and Squartini, T. (2015). Randomizing bipartite networks: the case of the World Trade Web. Scientific Reports, 5:10595. doi:10.1038/srep10595
Saracco, F. Straka, M. J., Di Clemente, R., Gabrielli, A., Caldarelli, G., and Squartini, T.. (2017). Inferring monopartite projections of bipartite networks: an entropy-based approach. New Journal of Physics, 19:053022. doi:10.1088/1367-2630/aa6b38
Vallarano, N., Bruno, M., Marchese, E., Trapani, G., Saracco, F., Cimini, G., Zanon, M., and Squartini, T. (2021). Fast and scalable likelihood maximization for exponential random graph models with local constraints. Scientific Reports, 11(1):15227. doi:10.1038/s41598-021-93830- 4
Cimini, G., Carra, A., Didomenicantonio, L., and Zaccaria, A. (2022). Meta-validation of bipartite network projections. Communications Physics, 5(1):76. doi:10.1038/s42005-022-00856-9
Bruno, M., Mazzilli, D., Patelli, A., Squartini, T., & Saracco, F. (2023). Inferring comparative advantage via entropy maximization. arXiv preprint arXiv:2304.12245.
Garlaschelli, D., and Loffredo, M. I. (2018). Maximum likelihood: Extracting unbiased information from complex networks, Phys. Rev. E 78, 015101(R)
Handbooks
Dosi, G. (2023). The Foundations of Complex Evolving Economies. Part One: Innovation, Organization and Industrial Dynamics. Oxford University Press